

Ermittlung und Aufbereitung von Werkstoffdaten für die numerische Schweißstruktursimulation

Teil 1:

Material Data Manager (MDM) Strain Hardening Tool (SHT) Stress Strain Calibration Manaer (SSCM)

Tobias Loose, Alexander Rausch,

Florian Hannemann, Arite Scharff

Dr.-Ing. Tobias Loose , Ingenieurbüro Tobias Loose, Wössingen (Lkr. Karlsruhe) B.Eng. Alexander Rausch, ESI Engineering System International GmbH, München cand.-ing. Florian Hannemann, ESI Engineering System International GmbH, München Dr.-Ing. Arite Scharff, SLV Mecklenburg-Vorpommern, Rostock

25. - 26. Oktober 2011, Weimar

Haftungsausschluß

Whilst this presentation has been carefully written and subject to intensive review, it is the reader's responsibility to take all necessary steps to ensure that the assumptions and results from any finite element analysis which is made as a result of reading this document are correct. Neither the companies not the authors can accept any liability for incorrect analysis.

Material Data Manager V3.400

Excelbasierte Aufbereitung von Werkstoffdaten

25. - 26. Oktober 2011, Weimar

Material Data Manager V3.400

- ï Excel-basiertes Tool zur Aufbereitung von Materialdaten
- ï Graphische und tabellarische Darstellung sämtlicher Werkstoffkennwerte
- ï Import- und Export von Sysweld Material-Datenbanken (*.mat) und METALLURGY.DAT-Dateien
- ï Trennen und Zusammenfügen von Datenbanken
- ï Schnittstellen zu Strain-Hardening Tool (SHT) und Stress Strain Calibration Manager (SSCM)
- ï Integration der Richter Stahldatenbank
- ï Automatische Konvertierung zwischen metrischen und US Einheiten
- ï Plausibilitätstests beim Export einer Materialdatenbank

Startseite

Funktionen auf Startseite

Import einer Materialdatenbank

Import einer Materialdatenbank

Spezifikation des Datensatzes falls Quellangaben fehlen

Unit declaration!	×
There is no Unit declarat Which Units are used in	tion in your Datasel the imported file?
SI-MM	
O US	
OK	

Arbeitsblatt "General"

Übersicht der zu deklarierenden SYSWELD-Labels

Mechanische Kennwerte:

Name	Tabellenblatt	SYSWELD-Label
E-Modul	Youngs Modulus	E
Poisson Koeffizient	Poisson Coefficient	NU
Thermische Dehnungen	Thermal Strains	LX, LY, LZ
Streckgrenze	Yield Strength	YIELD
Verfestigung	Strain Hardening	SLOPE
Anzahl der Phasen	Labels (Mechanics)	PHAS
Schmelzpunkt	Labels (Mechanics)	TF
Umwandlungsinduzierte Plastizität	Labels (Mechanics)	КҮ
Elastoplastisches Verhalten	Labels (Mechanics)	MODEL

Übersicht der zu deklarierenden SYSWELD-Labels

Thermo-Metallurgische Kennwerte:

Name	Tabellenblatt	SYSWELD-Label
Wärmeleitfähigkeit	Thermal Conductivity	КХ
Spezifische Wärmekapazität	Specific Heat	С
Enthalpie	Enthalpy	ENTH
Dichte	Density	RHO
Umwandlungsverhalten	Reaction	Reaction
Anzahl der Phasen	Material	PHASE

Import METALLURGY.DAT

SYSWELD

Arbeitsblatt "Reaction"

a)	A	В	С	D	E	F	G	H 1	. J.	К	L	M	N	0 P	Q	R S
											6					
	JATERI	AL DA	TABAS	SE MAN	AGEF	R - REA	CTION									
												t it right				
1		1														
T	ransformation	Label		TABLE	Value		TABLE	Value	TABLE	Value		TABLE	VALUE	TABLE	VALUE	
1	6	HEATING	PEQ	TABLE		100 TAU	TABLE	110								
2	6	HEATING	PEQ	TABLE		130 TAU	TABLE	140								
3	6	HEATING	PEQ	TABLE		100 TAU	TABLE	110								
4	6	HEATING	PEQ	TABLE		100 TAU	TABLE	110								
5	6	HEATING	PEQ	TABLE		100 TAU	TABLE	110								
3	1	HEATING	PEQ	TABLE		240 TAU	TABLE	250								
) 4	5	HEATING	PEQ	TABLE		270 TAU	TABLE	280								
1 6	5	COOLING	PEQ	TABLE		160 TAU	TABLE	170 F	TABLE	180	FP	TABLE	180 N	TABLE	190	
2 6	4	COOLING	PEQ	TABLE		200 TAU	TABLE	210 F	TABLE	220	FP	TABLE	220 N	TABLE	230	
3																
4																
5																
6 TI	ransformation	Label	VALUE	Label	Value											
7 6	3	COOLING	MS		420 KM	0.0142	8									
3						100.000										
9																
D																
1																
>																
3																
4																
5																
7 T	able 100			Table 110			Table 120		Table 130			Table 140		Table 150		Table 160
	Temperature	Value		Temperatu	ve Value		Not yet	Value	Temperature	Value		Temperature	Value	Not vet	Value	Temperat
2	[°C]	[-]		I°C1	[_]	s.	declarated	[.]	[°C]	f_1		PC1	[-]	declarated	[_]	I*C1
-	727	13	0	1.91	700 1000	000		13	1300	1.1	-	1250	1000000	or out at the	11	10
-	867	-	1		710 1000	000	-		1306	1	-	1230	1000		ð	
-	001	4			727	6	8		1300	-		1200	10	1	e	
				-	800	2			1330	6		1306	0.1			
-		1	-		967	2			57			1300	0.01		8	
-		1	-		000	4			1			1340	0.01			
-				1	000	0.4	3			k i	-	1340	0,01	7	8	
-				-	100	0.1	-			6		-				
7		í		1	200	0.05	0				-	-			8	
-		-			300	0.03				2		1		-		
-				1	500	0,01	-			6				-	8	
-				-	-		-			5						
-				-	2							-				
1	A AL PROPERTY	Evenent 10		commonte (th	ormo motalle	uravel Mate	The man	Conductivity (101)	Constitution (C)	Tablala	(CNITH)	Density (DUO)	Basetian	tabata feb annes mark	A Committee	

B C F F G H M D N MATERIAL DATABASE MANAGER - START - Interface for Material Databases (.mat) - Interface for Strain Hardening Tool 3 Mechanics Load Default Materials Import Yield from StrainHardening Tool **Delete Database** 8 Import Material Database Import Strain Hardening from StrainHardening Tool Change Units 9 SI-MM US 🔿 10 11 - Interface for Metallurgical File (.DAT) -12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 and and a second a second a second a second a Import Metallurgy Database Merge / Split existing Material Databases (.mat) **Merge Material Databases Split Material Databases** PHASE : PHASE 3 -PHASE 6 2000 000 000 000 2000 👎 💶 🖌 Start 🤇 Export 🔏 General 🖉 Comments (Mechanics) 🖉 Labeis (Mechanics) 🦿 Youngs Modulus (E) 🖉 Poisson Coefficient (NU) 🖉 Thermal Strains (LX, LY, LZ) 🖉 Yield Strength (YIELD)

Auswahl eines Werkstoffs

● <mark>5 St 35.8 1.030</mark> ● 6 St 45.8 1.040	5
• 6 St 45.8 1.040	5
O 12 St E 29 1.048	
Choose Material Database: select 1.084	6
• • • • • • • • • • • • • • • • • • •	5
Show Material Description O 16 St E 36 1.0854	
O 18 14 MoV 6 3 1.771	5
O 19 13 CrMo 4 4 1.733	5
Select Properties to Load : O 22 10 CrSiMoV 7 1.807	5
Vounas Madulus (F) Thormal Conductivity (VV) O 23 10 CrMo 9 10 1.738	D
O 24 20 CrMoV 13 5 1.777	9
Poisson Coefficient (NU) Specific Heat (C) O 25 St E 39 1.890(D.
Thermal Strains (LX, LY, LZ) Density (RHO)	2
O 27 St E 47 1.8904	2
O 28 15 NiCuMoNb 5 1.636	18.
Select Phases : 0 29 11 NiMnCrMo 5 5 1.691	9
PHASE 1 PHASE 2 OK 0 37 12 CrMo 19 5 1.7367	4
O 38 X 20 CrMoV 12 1 1.492	2
PHASE 3 PHASE 4 O 39 X 8 CrNiMoNb 16 16 1.498	
PHASE 5 PHASE 6 Cancel O 42 X 8 CrNiNb 16 13 1.496'	
O 43 X 8 CrNiMoVNb 16 13 1.498	8

Aufrufen der Werkstoffspezifikationen

Load Default Material Data:				
Choose Material Database:	select Show M	laterial Description	•	
Select Properties to Load : Youngs Modulus (E) Poisson Coefficient (NU) Thermal Strains (LX, LY, LZ) Select Phases : PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE 5 PHASE 6	Thern Speci Densi	Material Description St 35.8 %C: 0,1 %Si: 0,26 %Mn: 0,59 %P: 0,019 %S: 0,018 %Al: 0,008	%Cu: %Mo: 0,01 %Nb:	Designation: General Construction Steel
		%Co: %Cr: 0,02	₩.	

Auswahl der zu übernehmenden Parameter und

Phasen

Load Default Material Data:		
Choose Material Database:	St 35.8 Show Material Description	
Select Properties to Load :		
Youngs Modulus (E)	 Thermal Conductivity (KX) 	✓
Poisson Coefficient (NU)	Specific Heat (C)	
Thermal Strains (LX, LY, LZ)	Density (RHO)	
Select Phases :	_	
PHASE 1 PHASE 2	ОК	
PHASE 3 PHASE 4	Cancol	
PHASE 5 PHASE 6		

Schnittstelle zu Strain Hardening Tool und SSCM

- ï Import von Streckgrenze oder Verfestigung
- ï Kompatibel mit
 - $\tilde{n}\,$ Stress Strain Calibration Manager ab Version 1.000
 - $\tilde{n}\,$ Strain Hardening Tool ab Version 1.022

Zusammenführen von .mat-Dateien

- Führt beliebig viele .mat-Dateien mit einem
 Werkstoff zu einer Datenbank mit mehreren
 Werkstoffen zusammen
- ï Voraussetzung: .mat-Dateien müssen aus MDM geschrieben worden sein bzw. gleiches Format

Dateien auswählen: Für Mehrfachauswahl "Strg" halten

Zielspeicherort wählen

Trennen von .mat-Dateien

- ï Splittet eine .mat-Dateien mit mehreren Werkstoffen in mehrere Datenbanken mit einem Werkstoff auf
- ï Voraussetzung: .mat-Datei muss aus MDM geschrieben worden sein bzw. gleiches Format aufweisen

	 	JIII013-Weiman Materialdate P	Choose Export-Filename	• ++ 111013-Weiman-Materialdate P
	Organisieren • Neuer Ordner	III • 🔲 🕢	Organisieren 👻 Neuer Ordner)iii • 😧
Merge / Split existing Material Databases (.mat) Merge Material Databases Split Material Databases	Microsoft Eacel Favoriten Favoriten Desktop Downladts Zulett besucht Bibliotheken	Anordnen nach: Ordner -	Favoriten Desktop Subiciteken Subiciteken Muik Dokumede Muik Pedcasts Videos Dateingene <u>Subiciteken</u> Dateingene <u>Subiciteken</u> Autoren: Florian Hannemann Mariseru Moriseru	Anderungsdatum Typ 1310.2011 11.28 MAT-Datei 1511.2010 13.20 MAT-Datei mmeri Markierung hinsufugen Tools - Speichern Abbrechen
	Datei auswäl	nlen	Zielspeicher (für jede Da	ort wählen atei extra)

SYSWF

Exportieren der Werkstoffdatenbank

Exportieren der Werkstoffdatenbank

Exportieren der Werkstoffdatenbank

	H I J K L M N
MATERIAL DATABASE MANAGER - EXPOR	
2 LISTE -	
2 LISIE :	
A W S25512 TLO memoretal cp mm	Tranfer Data From Sheets to a Material Data File
6	
7	
8 NOM W S35512 TI O thermometal comm	Export File to Sysweld Database
g	
10 COMMENTAIRES :	
11	
12 MATERIAL:	
13 S355J2 with Tempered Martensit, Tempered Bainit for multilayered Weld	
14 weak coupling (Rho = constant)	
15 Fitting Yield and Slope of Bainit, Martensit as described in [1]	
16	
17 AUTOR:	
18 DrIng. Tobias Loose	
9	
20 REFERENCE:	Export in .mat- und
21 [1] Loose, Tobias;	
22 Einfluß des transienten Schweißvorganges auf Verzug, Eigenspannungen und	
23 Stabilitätsverhalten axial gedrückter Kreiszylinderschalen aus Stahl,	IVIE IALLUKGI. DAI-Dalei
4 Karlsruhe, Univ., Diss., 2007	
25 Online-Recource: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007537 26	
27 [2] Seyffahrth, P.; Meyer, B.; Scharff, A.: Großer Atlas Schweiß-ZTU-Schaubilder,	
28 DVS-Verlag, 1992	
29	
30	
31 Disclaimer:	
2 Whilst this database has been carefully written and subject to intensive review,	
13 it is the users responsibility to take all necessary steps to ensure that	
14 the assumptions and results from any finite element analysis which is made	
🕴 🔸 🕨 🧧 Export 🦽 General 🎢 Comments (Mechanics) 🔪 Labels (Mechanics) 💉 Youngs Modulus ((E) / Poisson Coefficient (NU) / Thermal Strains (LX, LY, LZ) / Yield Strength (YIELD) / '

Strain Hardening Tool

Teilautomatisiertes Kalibrieren von Streckgrenze und Verfestigung

25. - 26. Oktober 2011, Weimar

Strain Hardening Tool

- Schnelle Kalibrierung von Streckgrenze und
 Verfestigung auf Basis gemessener Werkstoffdaten
- Berechnung der Streckgrenze durch Vergleich mit
 E-Modul
- Ännähern der Verfestigungskurve durch vereinfachte Ramberg-Osgood-Gleichung
- ï Voll kompatibel mit Material Data Manager

Arbeitsblatt "Input"

Kalibrieren der Streckgrenze

Folgende Eingaben werden benötigt:

- ï E-Modul des Werkstoffs, Temperaturabhängig
- ï Streckgrenze bei Raumtemperatur von
 - ñ Grundwerkstoff
 - ñ Ferrit / Perlit
 - ñ Bainit
 - ñ Martensit
- ï Kohlenstoffanteil des Werkstoffs

Kalibrieren der Streckgrenze

Mecklenburg-Vorpommern

Teil 1 Seite 29

Kalibrieren der Verfestigung

Eingabe der gemessenen Verfestigung

Bestimmen der Ramberg-Osgood Konstanten für iteratives Anpassen der Kalibrierungskurve an gemessene Kurve

Auswahl zwischen bilinearer und multilinearer Austenitverfestigung

SYSWELD

Kalibrieren der Verfestigung

25. - 26. Oktober 2011, Weimar

Darstellung der Streckgrenze

Mecklenburg-Vorpommern

1	A	В	C	D	E	F	G	Н	- E	1	К	L	M	N	0	P	Q
1	Initial Measu	ured Material	Not	yet dep	osited		Martensite			Bainite			Ferrite / Pea	rlite		Austenite	
2	Temperature	Value	Tem	perature	Value		Temperature	Value		Temperature	Value		Temperature	Value		Temperature	Value
3	20,0	1200.0		20.0	172,0		20,0	400.0	0	20,0	800.0		20,0	900.0		20,0	172.0
4	100,0	1200,0		100,0	162,7		100,0	400,0	0	100,0	800,0		100,0	900,0		100,0	162,7
5	200,0	1200,0		200,0	147,4		200,0	400,0	0	200,0	800,0		200,0	900,0		200,0	147,4
6	300,0	1140,0		300,0	122,8		300,0	380,0	0	300,0	760,0		300,0	855,0		300,0	122,8
7	400,0	960,0		400,0	96,1		400,0	320,0	0	400,0	640,0		400,0	720,0		400,0	96,1
8	500,0	720,0		500,0	74,8		500,0	240,0	0	500,0	480,0		500,0	540,0		500,0	74,8
9	600,0	540,0		600,0	55,3		600,0	180,0	0	600,0	360,0		600,0	405,0		600,0	55,3
10	700,0	240,0		700,0	30,7		700,0	80,0	0	700,0	160,0		700,0	180,0		700,0	30,7
11	800,0	120,0	-	800,0	22,1		800,0	40,0	0	800,0	80,0		800,0	90,0		800,0	22,1
12	900,0	60,0		900,0	17,0		900,0	20,0	0	900,0	40,0		900,0	45,0		900,0	17,0
13	1000,0	60,0		1000,0	15,3		1000,0	20,0	0	1000,0	40,0		1000,0	45,0		1000,0	15,3
14	1100,0	60,0		1100,0	12,8		1100,0	20,0	0	1100,0	40,0		1100,0	45,0		1100,0	12,8
15	1200,0	12,0		1200,0	8,5		1200,0	8,5	5	1200,0	8,5		1200,0	9,0		1200,0	8,5
16	1300,0	5,0		1300,0	4,3		1300,0	5,0	0	1300,0	5,0		1300,0	5,0		1300,0	4,3
17																	
18																	
19																	
20																	
21				1400.0 -	i												
22																	
23													Meas. Mater	ired			
24				1200.0	28								NOT78	C			
25				1200,0		_							- Marter	ator			
26							\sim						224.50	~~			
27				1000.0	. <u> </u>		<u> </u>						Bainte	6			
28				100010													
29			0		* *	- Xi-		6 C					40				
30			E .	000.0	14 . W		×	X									
31			at	000,0 -	No 00		×	×									
32			ber				X	. X.									
33			E				\sim	\sim									
34			Ĕ	000,0 -					No.								
35								~									
36				100.0				~									
37				400,0 -		1	*		111							-	
38							the		11								
39				92/04/2020				A									
40		-		200,0 -	0-0-				2 M	~							
41					and the second s		-	200	~								
42									-			-		5			
43				0,0 +	20												
44		-		0.	0	200,0	400,0		000,0	800,0	1000,0		1200,0	1400,0			
45									Yield Stress(N	l/mm²)							
46	L	The second second	in the second second	(//)									Terry Street				
14	< > > Inp	out Vield	Strain Harden	ing 🖉	Mixed / 🙄 /												SHILL

Darstellung der Verfestigung

																				Multilinear
*	B	0	n	F	F	G	н	1	а	ĸ	वङ	м	N	0	P	0	P	\$	т н у	
itial Meace	rad Matari	ist			-				-					-						Initial Manufact Metal
	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value		
emperature 20	0.0	40.3	43.9	46.9	51.8	57.8	711	0,03	0,04	93.6	98.9	0,08	115.3	121.8	130.2	141.9	186.8	230.0	-	
100	0,0	40,3	43,9	46,9	51,9	57,8	71,1	80,3	87,6	93,6	98,9	107,8	115,3	121,8	130,2	141,9	186,8	230,0		A CONTRACTOR OF
200	0,0	40,3	43,9	46,9	51,9	57,8 54,9	71,1	80,3	87,6	93,6 88.9	98,9 94.0	107,8	115,3	121,8	130,2	141,9	186,8	230,0	-	set the set of the set
400	0,0	32,2	35,1	37,5	41,5	46,2	56,9	64,3	70,1	74,9	79,1	86,2	92,2	97,4	104,1	113,5	149,5	184,0	1	
500	0,0	24,2	26,3	28,2	31,1	34,7	42,7	48,2	52,5	56,2	59,3	64,7	69,2	73,1	78,1	85,2	112,1	138,0	1	-
700	0,0	8,1	8,8	21,1 9,4	20,4	26,0	14,2	16,1	17,5	42,1 18,7	44,5	40,5	23,1	24,0	26,0	28,4	37,4	46,0	" I the a	
800	0,0	4,0	4,4	4,7	5,2	5,8	7,1	8,0	8,8	3,4	9,9	10,8	11,5	12,2	13,0	14,2	18,7	23,0	1. and	
900	0,0	2,0	2,2	2,3	2,6	2,9	3,6	4,0	4,4	4,7	4,9	5,4	5,8	6,1	6,5	7,1	9,3	11,5	-	
1100	0,0	2,0	2,2	2,3	2,6	2,9	3,6	4,0	4,4	4,7	4,9	5,4	5,8	6,1	6,5	7,1	9,3	11,5		
1200	0,0	0,4	0,4	0,5	0,5	0,6	0,7	0,8	0,9	0,9	1,0	11	1,2	1,2	1,3	1,4	1,9	2,3	- Contraction of the local division of the l	
1300	0,0	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,4	0,4	0,5	0,5	0,5	0,6	0,8	1,0	597).	Strain
lot set depo	sited																	-		Not vet deposited
8 1	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value		10.00
emperature	0	0,003	0,004	0,005	0,007	0,01	0,02	0,03	0,04	0,05	0,06	0,08	0,1	0,12	0,15	0,2	0,5	1		and the second se
100	0,0	5,8	6,3	6,7	7,4	8,3	10,2	11,5	12,5	13,4	14,2	15,4	16,5	17,4	18,7	20,3	26,0	33,0		Bearettentert
200	0,0	5,8	6,3	6,7	7,4	8,3	10,2	11,5	12,5	13,4	14,2	15,4	16,5	17,4	18,7	20,3	26,8	33,0		and the second s
300	0,0	5,5	6,0	6,4	7,1	7,9	9,7	10,9	11,9	12,7	13,5	14,7	15,7	16,6	17,7	19,3	25,4	31,3	The second s	
500	0,0	3,5	3,8	4,0	4,5	5,0	6,1	6,9	7,5	8,1	8,5	9,3	9,9	10,5	11,2	12,2	16,1	19,8		and the second s
600	0,0	2,6	2,8	3,0	3,3	3,7	4,6	5,2	5,6	6,0	6,4	7,0	7,4	7,9	8,4	9,2	12,0	14,8		
800	0,0	1,2	0.6	1,3	1,5	0.8	1.0	2,3	2,5	1.3	1.4	3,1	3,3	3,5	1.9	4,1	2,7	3.3		
900	0,0	0,3	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,7	0,7	0,8	0,8	0,9	0,9	1,0	1,3	1,6	1 million	
1000	0,0	0,3	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,7	0,7	0,8	0,8	0,9	0,5					
1200	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,1	0,1	0,1	0,2	0,0	0,2	0,2					
1300	0,0	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,5	140.0 1			Austenite	
															_					<u>^</u>
Aartensite	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	120,0				
emperature	0	0,003	0,004	0,005	0,007	0,01	0,02	0,03	0,04	0,05	0,06	0,08	0,1	0,12	0,15					
100	0,0	13,4	14,6	15,6	17,3	19,3	23,7	26,8	23,2	31,2	33,0	35,8	38,4	40,6	43,4	100.0				
200	0,0	13,4	14,6	15,6	17,3	19,3	23,7	26,8	29,2	31,2	33,0	35,9	38,4	40,6	43,4	-80.0				
300	0,0	12,7	13,9	14,9	16,4	18,3	22,5	25,4	27,7	23,6	31,3	34,1	36,5	38,6	41,2	le la				
500	0,0	8,1	8,8	3,4	10,4	11,6	14,2	16,1	17,5	18,7	19,8	20,7	23,1	24,4	25	- Ž				
600	0,0	6,0	6,6	7,0	7,8	8,7	10,7	12,0	13,1	14,0	14,8	16,2	17,3	18,3	19,5				11/1/	
700	0,0	2,7	2,9	3,1	3,5	3,9	4,7	5,4	5,8	6.2	6.6	72	7,7	41	8,1	40.0		/		
900	0,0	0,7	0,7	0,8	0,9	1,0	1,2	1,3	1,5	- D:	1:		1	2,0	2,2					
1000	0,0	0,7	0,7	0,8	0,9	1,0	1,2	1,3	1,5	I BI	iine	ar	1,3	2,0	2,2	20.0				
1200	0,0	0,7	0,1	0,8	0,9	1,0	1,2	1,3	1,5	1 - '			0,4	2,0	2,2					
1300	0,0	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,4	0,4	0,4	0,5	0,5	0,	0.0		0.05	0.1 0.15	6.2 6.25
V0.575-	V. 25	1807	0.02	10715	1.150	1672	1997	0.055	1.40	0.8260	0.612	10400		10361					Strain	

Stress-Strain Calibration Manager

Teilautomatisiertes Kalibrieren von Streckgrenze und Verfestigung

25. - 26. Oktober 2011, Weimar

Stress-Strain Calibration Manager

- ï Geeignet für die schnelle Erstellung von Streckgrenzen- und Verfestigungskurven
- ï Skalierung der Kurven mit Hilfe vorhandener Streckgrenzenund Verfestigungsverläufe eines ähnlichen Werkstoffs als Basisfunktionen
- ï Benötigt einen Verlauf von Streckgrenze und Verfestigung temperaturabhängig
- ï Benötigt die Werte bei Raumtemperatur von
 - \tilde{n} Grundwerkstoff
 - ñ Ferrit / Perlit
 - ñ Bainit
 - ñ Martensit
 - ñ Austenit

ï Schnittstelle zu WeldWare

SYSWELD

Startseite

							get it	right				
Measured Values at room temperature	eld Strain ngth Hardening											
Initial Material	540 327		Phase 1:	Initial Material								
Martensite	1168 87		Phase 2:	Wire (same Yie Martensite	Id and Strain H	ardening as Au	stenite)					
Ferrite / Pearlite	873 199		Phase 3: Phase 4:	Bainite								
Austenite	245 152,5		Phase 5:	Ferrite / Pearlit	8		2					
True Strain at: 0.1	13 💽		Phase 6:	Austenite								
Yield Source-Data	Strain Harden	ing Source-D	ata									
rmperature Value	Temp [°C]	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Va
20 360	Strain [%]	0	0,003	0,0035	0,0054	0.01	0,03	0,04	0.05	0,07	0,085	
100 345,6	20	0,0	3.0	4.0	7.0	12.0	78.5	103,1	124,9	161,0	181.9	19
300 301	200	0.0	4.0	7.0	10.0	30.0	133.6	169.0	198.6	240.0	255.7	27
400 276	300		6.1	10,7	27.9	66.0	187,2	226,9	256,8	297,2	317.4	
500 227,5	400	0,0	12.8	16,7	31.1	64.0	174.2	212,3	241,3	278,7	295,3	30
700 87.9	600	0.0	1.8	2.6	5.4	9.8	14.0	15.0	16.0	17.0	18.0	10
800 51,3	700		1.2	1.7	3.5	6.5	10,1	11.0	11,8	12,8	13,5	1
900 37	800	0,0	0.5	0.8	1.6	3.1	6,2	7.0	7.5	8,5	9.0	
1100 16.2	1000	0,0	0,3	0,0	0.8	1.7	3.9	4.5	5.0	5.9	6,1	
1200 5	1100	0.0	0.0	0.0		0.0		the second se				
12.3.5	and the second se	0,0		0,0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	
1300 5	1300	0.0	0,0	0,0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	
1300 5	1300	0,0	0,0	0,0	0.0	0,0	0.0	0.0	0.0	0,0	0.0	
1300 5 1605 5 nport WeldWare Data me of Material S460M arge Loose	Delete WeldW	/are Data	Calibra	ate Yield a	nd Strain	0.0 0.2 Hardening	0.0 0.2 0.2	0.0	0.0	0.0	0,0	
1300 5 1505 5 nport WeldWare Data ime of Material \$460M arge Loose	Delete WeldW	/are Data	Calibra Yield Strength [N/mm ²]	ate Yield a	0.0 0.0 0.2 nd Strain	Hardening %Bainite	0.0 0.0 0.2	0.0	0.0	0.0	0.0	
1300 5 1505 5 nport WeldWare Data une of Material \$460M arge Loose emical composition: 2 2 0.05	Delete WeldW	(are Data	Calibra Calibra Strength [N/mm ¹] 1168	ate Yield a	0.0 0.0 0.2 nd Strain \$Martensite 53.39 18.97	0.0 0.0 0.2 Hardening %Bainite 45.09 76.28	0.0 0.0 0.2 %Ferrite / Pearlite 1.53 4.76	0.0	00	0.0	0.0	
1300 5 1555 5 mport WeldWare Data 346000 ame of Material \$46000 harrige Loose semical composition: \$6,002 Sr. 0.02 Mr: 0.75	L Hr 12 1300 1505 1	(are Data	0.0 0.0 0.2 Calibra Vield Strength [N/mm] 1168 1047 	strain Hardening N/mm ³ 101	0.0 0.0 0.2 nd Strain %Martensite 53.39 18.97 7.45	45.09 76.28 884.18	0.0 0.0 0.2 3 5 5 5 5 7 7 7 7 8.37	0.0	00 00 0,3	0.0 0.0 0,4	0.0	
1300 5 1505 5 mport WeldWare Data ame of Material \$460M harpe Loose hemical composition: \$460M C 0.04 Si 0.02 Mr: 0.79 P 0.0125	1300 1505 Delete WeldW	0.0 0.0 0.0 /are Data in [s] 1 2 3 3 4	Vield Strength [N/mm ²] 1168 1047 965 908	ate Yield a	0 0 0 0 0 0 2 nd Strain SMartensite 53,39 18,97 7,45 3 26 4	0.0 0.0 0.2 Hardening %Bainte 45.09 76.28 84.18 84.45 94.45	0.0 0.0 0.2 %Ferrite / Pearlite 1,53 4,76 8,37 12,28 4,6	0.0	0.0	0.0	0.0	
1000 5 15965 3 mport WeldWare Data ame of Material \$460M array of Loose hemical composition: C: 0.04 S: 0.02 Mr: 0.79 P: 0.0128 S: 0.012 Cr 0.16	1300 1505 Delete WeldW L Nr 1 1 2 3 3 4 5 6	(0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	00 02 Calibra Strength N/mm ² 11047 966 900 865 7929	0.0 0.0 0.2 ate Yield a Hardening R/mm ⁹ 101 104 104 104	0 0 0.00 0.2 nd Strain %Martensite 53.39 18.97 7.45 3.26 1.56 0.33	0.0 0.0 0.2 Hardening *Bainte 45.09 76.28 84.18 84.45 81.78 72.81	0.0 0.0 0.2 %Ferrite Posrtite 1.53 4.76 8.37 12.28 16.65 26.85	0.0	0.0	0.0 0.0 0.4	0.0	
1300 5 1500 5 mport WeldWare Data arre of Material \$460M harge Loose hemical composition: 0.04 S: 0.02 Mm: 0.79 P: 0.010 Cr 0.01 S: 0.01 S: 0.01 S: 0.01 S: 0.01	1300 1505 Delete WeldW IL IL IL IL I I I I I I I I I I I I I	(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Calibra Calibra Vield Strengt N/mm ¹ 1168 908 908 865 792 745	0.0 0.0 0.2 ate Yield a strain Hardening R/mm ⁹ 104 104 104 104 103 103	50000000000000000000000000000000000000	0.0 0.0 0.2 Hardening *K8ainite 45.09 76.28 84.18 84.18 84.45 81.72.83 64.3 72.283	0 0 0 0 0 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0 0.0 0.3	0.0 0.0 0.3	0.0	0.0	
1300 5 1505 5 Import WeldWare Data S460M ime of Material S460M import weight Loose semical composition: C C: 0.04 S: 0.02 Mr: 0.79 P. 0.0128 S: 0.01 S: 0.01 S: 0.01 S: 0.15 W: 0.4	1300 1505 Delete WeldW IL IL IL I I I I I I I I I I I I I I I	(0,0) (0,0)	Calibra Calibra Yield Strength 1168 1047 965 908 866 792 7464 719	0.0 0.0 0.2 ate Yield a Hardening N/mm ⁹ 101 104 104 103 103 103 103	0 0 0 0 0 2 nd Strain 53.39 18.97 7.45 3.26 1.56 0 3.30 0.99 0.044	45 09 76.28 KBainite 45 09 76.28 84.18 84.45 87.78 87.78 87.78 87.78 87.78 84.33 77.83 76.33 76.33 76.33	00 0.0 0.2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.0	0.0	0.0 0.0 0.4	00	
1000 6 15965 3 mport WeldWare Data ame of Material \$460M large Loose nemical composition: \$ C: 0.04 S: 0.02 Mr: 0.79 P: 0.0128 S: 0.012 N: 0.4 Mc: 0.15 N: 0.4 Mc: 0.11 V: 0.06 Cut 0.275	1300 1505 Delete WeldW L Nr 1 1 2 3 3 4 5 6 6 7 7 7 8 9 9 10	(), (), (), (), (), (), (), (), (), (),	Calibra Calibra Yield Strength [N/mm] 965 900 865 7922 746 719 669 869 865	0.0 0.0 0.2 ate Yield a Hardening [N/mm ² 104 104 103 103 103 103 104 104	*Martensite 53.39 16.97 7.45 1.56 0.33 0.09 0.04 0.01	%Bainite %Bainite 45.09 76.28 84.18 84.45 81.78 72.83 64.33 59.72 40.91	00 0.0 0.2 3 3 5 5 6 7 1 2 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00		00	0.0 0.0 0.4	
1000 6 1005 5 mport WeldWare Data ame of Material \$460M harge Loose hemical composition: \$460M C 0.04 Si: 0.02 Mr: 0.79 P: 0.012 Si: 0.02 Mr: 0.71 Cr 0.15 Si: 0.02 Mo: 0.11 Cr 0.15 Si: 0.02 Mai: 0.4 Mo: 0.1 Cu: 0.275 Ai: 0.02	1300 1505 Delete WeldW IL 1 2 3 4 4 5 6 6 7 8 9 10 10	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	Calibra Calibra Vield Strength Numn ³ 1163 966 966 792 746 699 665 650	20 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	*Martensite 53.39 18.97 7.45 0.03 0.04 0.04 0.04	5.0 6.0 6.2 Hardening 5.8ainte 45.09 76.28 84.18 84.45 87.72.83 64.33 56.73 56.33 56.73 20.9 20.06	0.0 0.0 0.2 3 3 3 3 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5	00	00	00	9.0 6.0 0.4	
1000 6 1506 5 nport WeldWare Data ame of Material \$460M arge Loose semical composition: \$460M S: 0.01 S: 0.02 Mr: 0.79 S: 0.01 S: 0.01 N: 0.4 V: 0.65 N: 0.15 N: 0.1 V: 0.05 Ai: 0.02 Ai: 0.02 Ai: 0.02	1300 1505 Delete WeldW IL IL IL I I I I I I I I I I I I I I I	(0) (0) (0) (are Data (a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Calibra Calibra Vield Strength IV/mm ² 1168 900 865 762 764 659 659 659 659 659 659 659 659 659 659	0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	53.39 54.00 55.39 10.97 10	4,00 0,00 0,21 Hardening *80ainite 45,09 76,28 84,18 84,45 187,78,28 77,283 64,33 56,72 40,9 26,00 26,00 20,35 20,35	00 00 02 SFerrite Pearite 1.53 4.76 8.37 12.28 16.65 35.61 49.51 9.51 9.51 7.9.65	00	00		00 00 0.4	
1000 5 15965 3 mport WeldWare Data ame of Material \$460M arge Losse semical composition: \$ C: 0.04 S: 0.02 Mr: 0.79 P: 0.0128 S: 0.01 N: 0.4 Mc: 0.15 N: 0.02 Mc: 0.275 A/ 0.025 N: 0.025 N: 0.022 N: 0.022 N: 0.022 N: 0.022 N: 0.022	1300 1505 Delete WeldW L L Nr 1 1 2 3 3 4 5 6 6 7 7 7 7 8 9 9 10 11 12 13 3 14	0.0 0.0 /are Data in [9] 1 1 2 3 3 4 5 5 7.5 5 7 5 5 0 10 12 2 0 0 3 0 0 0 0 0 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5	Collibra 0.2 Calibra Vield Strength N/mm ² 1168 1047 1965 900 865 722 746 799 665 662 622 622 622 623 533	0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 90 90 92 40 40 40 40 40 40 40 40 40 40	00 0.0 0.2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00	00	00	9.0 9.0 0.4	
1300 100 1505 5 mport WeldWare Data mmod Material \$460M marge Loose mmical composition: \$2 2: 0.04 2: 0.04 2: 0.04 2: 0.04 2: 0.04 3: 0.05 3: 0.01 2: 0.02 3: 0.01 2: 0.02 3: 0.01 2: 0.02 3: 0.02 3: 0.02 3: 0.02 3: 0.02	1300 1505 Delete WeldW IL IL I I I I I I I I I I I I I I I I	(0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Calibra Calibra Vield Strengt Numma Numma Numma 900 900 900 900 900 900 900 900 900 90	5train Hardening Il/um/1 104 104 104 104 105 107 110 112 118 124	*Martensite 53.39 16.97 7.45 3.26 0.33 0.04 0.04 0.04 0.04 0.04 0.04 0.04	5,00 0,21 0,21 0,21 0,21 0,21 0,21 0,21 0	0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	00	00	00	90 60 0,4	

Value 0,13

Parametereingabe

Eingabe der gemessenen Werte bei Raumtemperatur

Measured Values at room temperature	Yield Strength [N/mm²]	Strain Hardening [N/mm²]
Initial Material	540	32
Martensite	1168	8
Bainite	908	10
Ferrite / Pearlite	873	19
Austenite	245	152,
True Strain at:	0.13 -	
	7	

Wahre plastische Dehnung der Zugfestigkeit.

Vorgabe eines Streckgrenzenverlaufs als Basisfunktion

Temperature [°C]	Value [N/mm²]
20	360
100	345.6
200	321
300	301
400	276
500	227,5
600	179.8
700	87,9
800	51,3
900	37
1000	24.4
1100	16,2
1200	
1300	-5
1505	5

Parametereingabe

Vorgabe eines Verfestigungsverlaufes als Basisfunktion

Strain Hardeni	ng Source-Data											
Temp [°C] /	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Strain [%]	0	0,003	0,0035	0,0054	0,01	0,03	0,04	0,05	0,07	0,085	0,1	0,13
20	0,0	3.0	4,0	7.0	12,0	78,5	103,1	124,9	161,0	181,9	197.9	216,9
100	0.0	3,0	4,0	7.0	15,0	72,6	95,4	115,6	149,2	168,7	183,5	201,0
200	0,0	4,0	7,0	10,0	30,0	133,6	169,0	198,6	240,0	255,7	270,0	285,0
300	0,0	6,1	10,7	27,9	66,0	187,2	226,9	256,8	297.2	317,4	333.0	351,1
400	0.0	12.8	16,7	31,1	64.0	174,2	212,3	241.3	278,7	295.3	308,4	325.0
500	0.0	13.1	16,4	28,7	55,5	130.4	148,5	158,3	167.1	177.8	183.0	188.0
600	0,0	1,8	2,6	5,4	9,8	14,0	15,0	16,0	17,0	18,0	19,0	20,0
700	0,0	1,2	1,7	3,5	6,5	10,1	11,0	11,8	12,8	13,5	14,3	15.0
800	0,0	0,5	0,8	1,6	3,1	6,2	7.0	7,5	8,5	9,0	9,5	10,0
900	0,0	0,3	0,5	1,0	2,3	6.0	7,1	8,0	9,2	9,7	10,2	10.7
1000	0.0	0,3	0,4	8,0	1.7	3,9	4.5	5,0	5,9	6,1	6.6	7,1
1100	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
1300	0,0	0.0	0_0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0
1505	0.0	0,2	0,2	0,2	0,2	0,2	0.3	0,3	0.4	0.4	0.4	0.4

Kalibrieren der Kurven & Schnittstelle zu WeldWare

Darstellung der Streckgrenze

Mecklenburg-Vorpommern

1	A	В	С	D	E	F	G	Н	L.	J	K	L	M	N	0	P	Q	-
1	Initial Measu	red Material		Not yet depos	sited		Martensite			Bainite			Ferrite / Pea	rlite		Austenite		6
2	Temperature [°C]	Value [N/mm²]		Temperature [°C]	Value [N/mm²]		Temperature [°C]	Value [N/mm²]		Temperature [°C]	Value [N/mm²]		Temperature [°C]	Value [N/mm²]		Temperature [°C]	Value [N/mm ²]	
3	20	540,0		20	245,0		20	879,0		20	555,0		20	497,0		20	245,0	
4	100	518,4		100	235,2		100	843,8		100	532,8		100	477,1		100	235,2	
5	200	481,5		200	218,5		200	783,8		200	494,9		200	443,2		200	218,5	
6	300	451,5		300	204,8		300	734,9		300	464,0		300	415,5		300	204,8	
7	400	414,0		400	187,8		400	673,9		400	425,5		400	381,0		400	187,8	
8	500	341,3		500	154,8		500	555,5		500	350,7		500	314,1		500	154,8	
9	600	269,7		600	122,4		600	439,0		600	277,2		600	248,2		600	122,4	
10	700	131,9		700	59,8		700	214,6		700	135,5		700	121,4		700	59,8	
11	800	77,0		800	34,9		800	125,3		800	79,1		800	70,8		800	34,9	
12	900	55,5		900	25,2		900	90,3		900	57,0		900	51,1		900	25,2	
13	1000	36,6		1000	16,6		1000	59,6		1000	37,6		1000	33,7		1000	16,6	
14	1100	24,3		1100	11,0		1100	39,6		1100	25,0		1100	22,4		1100	11,0	
15	1200	7,5		1200	3,4		1200	12,2		1200	7,7		1200	6,9		1200	3,4	
16	1300	7,5		1300	3,4		1300	12,2		1300	7,7		1300	6,9		1300	3,4	
17	1505	7,5		1505	3,4		1505	12,2		1505	7,7		1505	6,9		1505	3,4	
18																		=
19																		
20																		
21				1000.0 -														
22				10000000									Inital					
23				90.0.0									Measu	red l				
24				000,0	h-													
25				000.0	-													
26				000,0		X								316				
27				00000			*						Bainite					_
28				700,0														
29				5				L					93 .	10				
30				e 600,0				~										
31				E				1										
32				6 500,0	-													
33				5	1				No.									
34				400.0			**	11	<u> </u>									
35									1									
36				200.0														
37				300,0	100 million (100 million)													
38					·····	-												
39				200,0														
40				Constanting of the						-								
41				100,0							-							
42		a construction in the second	and the survey	1.000						245	A State of the sta	-						
14 4	> > Start	Vield Strai	in Hardening	1/12/									UH.					I

Teil 1 Seite 41

Darstellung der Verfestigung

Mecklenburg-Vorpommern

1		D	6	- D.	- E-	ारः	6	.0.	102		N		- 101		0		0	- n			
2	Initial Meas	ured Materi	ial																		
3		Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Initial Newsond Volenal
4	Temperature	0	0,003	0,0035	0,0054	0,01	0,03	0,04	0,05	0,07	0,085	0,1	0,13	0,17	0,24	0,3	0,4	0,5	0,8	1	
5	200	0,0	4,5	6,0	10,6	18,1	118,3	155,4	188,3	242,7	274,2	298,3	327,0	334,5	347,7	358,9	377,7	396,5	452,9	490,5	
7	200	0,0	4,2	10.6	10,6	45.2	2014	254.8	299.3	224,3	254,2	407.0	429.6	439.5	456.8	4716	496.3	521.0	413,6	644.4	
8	300	0.0	9.2	16,2	42.0	99.5	282.1	342.0	387.1	448.0	478.5	501.9	529.3	541.5	562.8	581.0	611.4	641.9	733.1	794.0	
э	400	0,0	19,2	25,1	46,9	96,5	262,6	320,0	363,7	420,0	445,1	464,9	489,9	501,2	520,9	537,8	565,9	594,1	678,5	734,8	
10	500	0,0	19,7	24,8	43,3	83,7	136,6	223,9	238,7	251,9	268,0	275,9	283,4	283,3	301,3	311,1	327,4	343,6	392,5	425,1	
11	600	0,0	2,7	3,9	8,1	14,8	21,1	22,6	24,1	25,6	27,1	28,6	30,1	30,8	32,1	33,1	34,8	36,6	41,8	45,2	
12	800	0,0	1,0	2,0	5,2	3,0	15,3	10,0	11,1	10,2	20,3	21,5	22,0	23,1	24,0	24,0	20,1	21,4	20.9	33,3	
14	300	0.0	0,5	0.7	16	3.5	3.0	10,0	12.1	13.9	14.6	15.4	16.1	16.5	17.1	17.7	18.6	13.6	22.3	24.2	
15	1000	0,0	0,5	0,6	1,3	2,5	5,8	6,8	7,6	8,9	9,2	9,9	10,7	10,9	11,4	11,7	12,4	13,0	14,8	16,1	
16	1100	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	15
17	1300	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	***
18	1505	0,0	0,3	0,3	0,3	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,7	0,7	0,8	0,8	0,9	1,2	1,4	1,4	
20																					Stee
21	Not yet dep	posited																			
22		Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Not we democrated
23	Temperature	0	0,003	0,0035	0,0054	0,01	0,03	0,04	0,05	0,07	0,085	0,1	0,13	0,17	0,24	0,3	0,4	0,5	0,8	1	
24	20	0,0	2,1	2,8	4,9	8,4	55,2	72,5	87,8	113,2	127,9	139,1	152,5	156,0	162,1	167,4	176,2	184,9	211,2	228,8	
26	200	0,0	2,1	4.3	4,3	211	51,1	6r,0 118.8	133.6	104,3	110,6	123,0	200.4	205.0	213.0	219.9	2314	243.0	135,7	20,3	
27	300	0,0	4,3	7,6	19,6	46,4	131,6	159,5	180,5	208,9	223,1	234,1	246,8	252,5	262,5	271,0	285,2	233,3	341,9	370,3	
28	400	0,0	9,0	11,7	21,3	45,0	122,5	143,2	169,6	195,9	207,6	216,8	228,5	233,7	242,9	250,8	263,9	277,1	316,4	342,7	
29	500	0,0	9,2	11,6	20,2	39,0	91,7	104,4	111,3	117,5	125,0	128,6	132,2	135,2	140,5	145,1	152,7	160,3	183,1	198,2	
30	600	0,0	1,3	1,8	3,8	6,9	9,8	10,5	11,2	12,0	12,7	13,4	14,1	14,4	14,9	15,4	16,2	17,0	19,5	21,1	
31	200	0,0	0,8	1,2	2,4	4,6		1.1	8,3	9,0	3,5	10,0	10,5	10,8	11,2	11,6	12,2	12,8	14,6	15,8	
33	300	0,0	0,4	0,5	0.7	16	4.2	5.0	5.6	6.5	6.8	7.2	7.5	77	80	83	87	91	10.4	11.3	
34	1000	0.0	0.2	0.3	0.6	1.2	2.7	3.1	3.5	4.2	4.3	4.6	5.0	5.1	5.3	5.5	5.8	6,1	6.9	7.5	
35	1100	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
36	1300	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
37	1505	0,0	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,5	0,7	0,7	
39																					Stren
40	Martensite																				
41	1.00.102.0024/1402	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Verterate
42	Temperature	0	0,003	0,0035	0,0054	0,01	0,03	0,04	0,05	0,07	0,085	0,1	0,13	0,17	0,24	0,3	0,4	0,5	0,8	1	
43	20	0,0	2,5	3,3	5,8	10,0	65,1	85,5	103,7	133,6	150,9	164,2	180,0	184,1	191,4	197,6	207,9	218,3	249,3	270,0	
44	200	0,0	2,5	5.8	5,0	24.9	110.9	140.3	36,0	123,0	133,3	224.0	236.5	241.9	251.4	163,1	273.2	202,2	231,0	250,1	
46	300	0,0	5,1	8,3	23,1	54,8	155,3	188,2	213,1	246,6	263,4	276,3	231,4	298,1	309,8	319,8	336,6	353,3	403,6	437,0	
47	400	0,0	10,6	13,8	25,8	53,1	144,5	176,1	200,2	231,2	245,0	255,9	269,7	275,9	286,7	236,0	311,5	327,0	373,5	404,5	
48	500	0,0	10,9	13,6	23,9	46,1	108,2	123,2	131,4	138,7	147,5	151,8	156,0	153,6	165,9	171,2	180,2	183,2	216,1	234,0	2
43	500	0,0	1,5	2,2	4,5	8,2	11,6	12,4	13,3	14,1	14,3	15,8	15,5	17,0	17,5	18,2	13,2	20,1	23,0	24,9	
51	800	0,0	0,4	0.6	1.3	2.6	5.2	5.8	6.2	7.1	7.5	7.9	8.3	8.5	8.8	3,1	3.6	10,1	11.5	12.4	
52	900	0,0	0,3	0,4	0,9	1,9	4,9	5,9	6,6	7,6	8,0	8,5	8,9	9,1	9,4	9,7	10,3	10,8	12,3	13,3	
53	1000	0,0	0,3	0,4	0,7	1,4	3,2	3,7	4,2	4,9	5,1	5,5	5,9	6,0	6,3	6,5	6,8	7,1	8,2	8,8	
54	1100	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
66	1300	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
57	1505	0,0	.90	0,4	9,4	0,2	0,4	0,2	0,0	0,0	0,0	0,0			9,4	9.9	9,9	0,0	0,0	0,0	
58																					Stren
59	Bainite																				
60	T	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Bente
01	i emperature	0	0,003	0,0035	0,0054	10,01	0,03	0,04	102.0	0,07	0,085	170.4	0,13	192.2	0,24	0,3	0,4	0,5	0,8	0005	
63	100	0.0	2,6	3,5	6,1	10,5	63.3	83.1	100,5	130.0	146.9	153.3	175.1	179.1	186.2	192.2	202.3	212.3	242.5	262.6	• • • • • • • • • • • • • • • • • • •
64	200	0,0	3,5	6,1	8,7	26,1	116,4	147,3	173,0	209,1	222,8	235,2	248,3	254,0	264,0	272,6	286,8	301,1	343,9	372.5	
65	300	0,0	5,3	9,4	24,3	57,5	163,1	197,6	223,7	258,9	276,6	290,1	305,9	313,0	325,3	335,8	353,4	371,0	423,7	458,9	
66	400	0,0	11,1	14,5	27,1	55,8	151,8	185,0	210,2	242,8	257,2	268,7	283,2	289,7	301,1	310,8	327,1	343,4	392,2	424,7	
67	500	0,0	11,4	14,3	25,0	48,4	113,6	129,4	138,0	145,6	154,9	159,4	163,8	167,6	174,1	179,8	189,2	198,6	226,9	245,7	
69	700	0,0	1,0	2,0	4,1	0,0	12,2	10,1	10,2	14,0	11.8	10,0	13.1	13.4	13.9	10,1	20,1	21,1	24,1	20,1	
70	800	0.0	0.5	0.7	1.4	2,7	5,4	6,1	6,5	7.4	7.8	8.3	8,7	8,9	9.3	3.6	10,1	10.6	12,1	13.1	
71	900	0,0	0,3	0,4	0,9	2,0	5,2	6,2	7,0	8,0	8,4	8,9	9,3	9,5	9,9	10,2	10,8	11,3	12,9	14,0	
20	1000	0.0	0.3	0.4	0.7	1.5	3,4	3,9	4,4	5,2	5,3	5.8	6.2	6.3	6.6	6.8	7.1	7,5	8,6	9,3	
14	1000	010																			
73	1000	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	

Zusammenspiel von Strain Hardening Tool und Stress-Strain Calibration Manager

25. - 26. Oktober 2011, Weimar

Möglichkeit Musterverlauf des SSCM in SHT zu erstellen

Erstellen von initial Yield im SHT

Erstellen von initial Strain Hardening im SHT

> Kopieren von Yield & Strain Hardening aus SHT in Source Data Tabellen des SSCM

25. - 26. Oktober 2011, Weimar

Teil 1 Seite 44

Ermittlung und Aufbereitung von Werkstoffdaten für die numerische Schweißstruktursimulation

Phase Transformation Calibration Manager (PTCM)
Teil 2:

Tobias Loose , Alexander Rausch,

Florian Hannemann, Arite Scharff

Dr.-Ing. Tobias Loose , Ingenieurbüro Tobias Loose, Wössingen (Lkr. Karlsruhe) B.Eng. Alexander Rausch, ESI Engineering System International GmbH, München cand.-ing. Florian Hannemann, ESI Engineering System International GmbH, München Dr.-Ing. Arite Scharff, SLV Mecklenburg-Vorpommern, Rostock

25. - 26. Oktober 2011, Weimar

Haftungsausschluß

Whilst this presentation has been carefully written and subject to intensive review, it is the reader's responsibility to take all necessary steps to ensure that the assumptions and results from any finite element analysis which is made as a result of reading this document are correct. Neither the companies not the authors can accept any liability for incorrect analysis.

Agenda

- ï Allgemeines Vorgehen
- ï Mathematische Beschreibung der Gefügeumwandlung
- ï Funktionalität PTCM
- ï Kalibrierung isothermes ZTU-Diagramm
- ï Kalibrierung kontinuierliches ZTU-Diagramm
- ï Kalibrierung Martensit-Umwandlung
- ï Export
- ï Ergebnisse

Materialkennwerte bei diskreten Umgebungszuständen; Verfügbar aus kont./isoth. ZTU-Schaubildern, WeldWare Beschreibung des Materialverhaltens durch math. Gleichungen Materialzustände für jeden Zeitpunkt des Prozesses Teil 2 Seite 4

Forum 2011

25. - 26. Oktober 2011, Weimar

en

Import Data from WeldWa

Mathematische Beschreibung der Gefügeumwandlung

ÏDie mathematische Beschreibung der Phasenumwandlung geschieht über 3Modelle:
- Leblond: $\frac{dP(T)}{dt} = f(T) \cdot \frac{PEQ(T) - P(T)}{TAU(T)}$ nicht isotherme Umwandlungen

- Johnson-Mehl-Avrami: $P(t) = PEQ \cdot \left(1 - e^{-\left(\frac{t}{TAU}\right)^n}\right)$ isotherme Umwandlungen

- Koistinen-Marburger: $P(T) = 1 - \exp(-b \cdot (Ms - T))$ Martensit Umwandlungen

Р	Phasenanteil	\dot{T}	Aufheiz-/Abkühlrate
PEQ	Phasenanteil im Gleichgewicht	TAU	Verzögerungsglied
Т	Temperatur	Ms	Martensit Starttemperatur
t	Zeit	b	Koistinen-Marburger Faktor

Funktionalität PTCM

2 Phase 4: Bante/Tempered Martenste 2 Phase 5: Ferrite/Pearlite Phase 6: Austenite Tend: 500 Cycle Number Start.time End-time Rate % Phase 1 % Phase 2 % Phase 3 % Phase 5	Tstart: 800	Tstart:		Martensite	Phase 3:	Material 🔽	Not Yet Deposited	Phase 2:		itial Material	Phase 1:
Cycle Number Start-time End-time Rate % Phase 2 % Phase 3 % Phase 5 % Phase 6 1 2.00 16.00 -21.4286 0 0 36.0 90.0 0.0 7.0 3 8.00 95.00 -3.4483 0 0 17.0 40.0 40.0 0.0 <td< th=""><th>Tend: 500</th><th>Tend:</th><th></th><th>Austenite</th><th>Phase 6:</th><th></th><th>Ferrite/Pearlite</th><th>Phase 5:</th><th>artensite 🗹 🖡</th><th>ainite/Tempered Ma</th><th>Phase 4: B</th></td<>	Tend: 500	Tend:		Austenite	Phase 6:		Ferrite/Pearlite	Phase 5:	artensite 🗹 🖡	ainite/Tempered Ma	Phase 4: B
1 200 16.00 -21.4286 0 0 93.0 0.0 7.0 2 6.00 50.00 -6.8182 0 0 36.0 60.0 0.0 4.0 3 8.00 95.00 -3.4483 0 0 17.0 40.0 40.0 0.0 Min: 4 20.00 170.00 -2.0000 0 0 0.0 100.0 0.0 Min: P? 5 - - - - - - P? S: Cr: Ni:	5 % Phase 6 Chemical Composition:	% Phase 6	% Phase 5	% Phase 4	% Phase 3	% Phase 2	% Phase 1	Rate	End-time	Start-time	Cycle Number
2 6.00 50.00 -6.8182 0 0 36.0 60.0 0.0 4.0 3 8.00 95.00 -3.4483 0 0 17.0 40.0 40.0 0.0 5	7.0	7.0	0.0	0.0	93.0	0	0	-21.4286	16.00	2.00	1
3 8.00 95.00 -3.4483 0 0 17.0 40.0 40.0 0.0 4 20.00 170.00 -2.0000 0 0 0.0 100.0 0.0 6	4.0 C:	4.0	0.0	60.0	36.0	0	0	-6.8182	50.00	6.00	2
4 20.00 170.00 -2.0000 0 0 0.0 100.0 0.0 Mn: 5 - </td <td>0.0 Si:</td> <td>0.0</td> <td>40.0</td> <td>40.0</td> <td>17.0</td> <td>0</td> <td>0</td> <td>-3.4483</td> <td>95.00</td> <td>8.00</td> <td>3</td>	0.0 Si:	0.0	40.0	40.0	17.0	0	0	-3.4483	95.00	8.00	3
5 9 9 6 6 6 7	0.0 Mn:	0.0	100.0	0.0	0.0	0	0	-2.0000	170.00	20.00	4
0 Si 8 Si 9 Si 10 Si 11 Si 12 Si 13 Si 14 Si 15 Si 16 Option für Wärmebehandlung Si 18 Wärmebehandlung 20 Import Data from other PTCM	P:										5
1 1											7
9 Import Data from other PTCM 10 Import Data from other PTCM	Ni [.]										8
10 Import Data from other PTCM 11 Import Data from other PTCM	Mo:										9
11 11 12 12 12 12 13 13 14 13 14 15 15 16 16 17 Option für Nb: N: Nb: N: Nb: N: Nb: N: Nc Nc <td>V:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td>	V:										10
12 Al: 13 Al: 14 Al: 15 Al: 16 Option für 17 Option für 18 Wärmebehandlung und Schweißen 20 Fitting for high and low cooling rates active Import Data from other PTCM Import PTCM	Cu:										11
13 Import Data from other PTCM 13 Import Data from other PTCM	AI:										12
14 Nb: 15 Option für 16 Option für 17 Option gund Schweißen 19 Import Data from other PTCM	Ti:										13
15 N: 16 Option für 17 Option für 18 Wärmebehandlung und Schweißen 20 Import Data from Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM	Nb:										14
16 0 Option für 18 Wärmebehandlung Import Data from 19 Import Data from 20 Import Data from Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM	N:										15
18 Wärmebehandlung Import Data from 19 und Schweißen Import Data from Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM								für	Ontion		16
19 19 20 und Schweißen Import Data from Import Data from Import Data from Datensätzen									option		11/
20 und Schweißen Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM Datensätzen	Import Data from We						ung k	behandl	Wärmel		19
Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM											20
Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM Datensätzen								weilsen	und Sch		
Cooling Start Temperature: 860 Fitting for high and low cooling rates active Import Data from other PTCM Datensätzen	Import von Weld										
Fitting for high and low cooling faces active import Data from other PTCM Date fisher active import Data from other PTCM	Datensätzen		rom other DTC	Import Det	a atius	u an allin and	a biab and t	Entry of	860	emperature:	Cooling Start T
	Datensatzen		rom other PTC	import Data 1	active	v cooring rate	or high and lov	Fitting fo			
Option für										on für	Optio
Schweißen Fitting for high cooling rates only Reset Data on all Sheets	eets		on all Sheets	Reset Data	v	oling rates or	ina for hiah co	Fitt		eißen	Schw

Isothermes Umwandlungsverhalten

Isothermes Umwandlungsverhalten

ï

ï

ï

- Übertragen der ausgelesenen Werte in den PTCM
- Automatische Berechnung der Parameter Tau und n
- Zusätzlich kann der zeitliche Verlauf der Gefügeumwandlung über ein Diagramm visualisiert werden

$$TAU = e^{\left(\frac{(a-b)\cdot\ln ts + b\cdot\ln te}{a}\right)}$$
$$N = \frac{a}{\ln te - \ln ts}$$
$$v1 = \ln\left(\ln\left(\frac{Peq}{Peq - P}\right)\right) \quad \text{mit P=0.01}$$
$$v2 = \ln\left(\ln\left(\frac{Peq}{Peq - P}\right)\right) \quad \text{mit P=0.99}$$
$$a = |v1| + |v2| \qquad b = |v1|$$

Forum 2011

SYSWELD

Kontinuierliches Umwandlungsverhalten

Kontinuierliches Umwandlungsverhalten

Phase 4	Initial Material Bainite/Tempered M	artensite 🔽	Phase 2:	Not Yet Depositer	1 Material	Phase 3: Phase 6:	M artensite Austenite		Tstart: Tend:	800		
							VIOLOTINO					
Cycle Number	Start time	End time	Rate	% Phase 1	% Phase 2	% nas. 3	% Phase 4	% Phase 5	% - man - 6		Chemical Composition	n:
1	2.00	16.00	-21.4286	0	0	93.0	0.0	0.0	7.0			
2	6.00	50.00	-6.8182	0	0	50.0	60.0	0.0			C:	
3	8.00	95.00	-3.4483	0	0	17.0	40.0	40.0	0.0		Si:	
4	20.00	170.00	-2.0000	0	0	0.0	0.0	100.0	0.0		Mn:	
<u> </u>					-	-					P:	
•												
7											Cr	
7											Cr: Nit	
7											Cr: Ni: Mo:	
matische	Berechn	ung									Cr: Ni: Mo: V:	
matische	Berechn	ung									Cr: Ni: Mo: V: Cu:	
matische Abkühlrate	Berechn	ung				 					Cr: Ni: Mo: V: Cu: Al:	
matische Abkühlrate	Berechn e	ung				Image: Constraint of the second sec					Cr: Ni: Mo: V: Cu: Al: Ti:	
matische Nbkühlrate	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb:	
Tantische Matische Abkühlrate	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N:	
natische Nbkühlrate	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N:	
7 matische Abkühlrate	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N:	
7 matische Abkühlrate	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N: N:	Veld
7 matische Abkühlrate 15 16 17 18 19	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N: N:	Veld
7 matische bkühlrate 14 15 16 17 18 19 20	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N: N:	Weld
7 matische Abkühlrate 14 15 16 17 18 19 20	Berechn										Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N: Import Data from V	Weld
7 matische Abkühlrate 14 15 16 17 18 19 20	Berechn	ung									Cr: Ni: Mo: V: Cu: Al: Ti: Nb: N: Import Data from V	Weld

Automatisches Anpassen der Parameter

Martensit Kalibrierung

Export

Mecklenburg-Vorpommern

MATERIA	L 1 PHASE 6								;				COLDISP IT PHASE 4 DAT
REACTIO	N							Copy Data to	Project-Shee	et			
1 6 HEAT	TING PEQ TABLE	E 100 TAU TAI	BLE 110 F TA	BLE 120									T OL DICD IT DUACE 5 DAT
2 6 HEAT	TING PEQ TABLE	E 130 TAU TAI	BLE 140 F TA	BLE 150			_		Duri ant Cil			_	UI_DISP_II_PHASE_S.DAT
3 6 HEA	TING PEQ TABLE	E 100 TAU TAU	SLE 110 F TA	BLE 120 BLE 120				Export Data 1	o Project-rik	e			
5 6 HEAT	TING PEQ TABLE	E 100 TAU TAI	3LE 110 F TA	BLE 120									© 02 CALIBRATE CCT PHASE 4.DAT
3 4 HEAT	TING PEQ TABLE	E 240 TAU TAI	BLE 250 F TA	BLE 260									
6 5 COO	LING PEQ TABL	E 160 TAU TA	BLE 170 F TA	BLE 180 FP TA	ABLE 180 N T	ABLE 190							TO CALIBRATE CCT DHASE 5 DAT
64C00	LING PEQ TABL	E 200 TAU TA	BLE 210 F TA	BLE 220 FP TA	ABLE 220 N T	ABLE 230							La 02_CALIBICATE_CCT_FHASE_5.DAT
TABLES	LING MS 240 KM	10.0122											CALIBRATE MS.DAT
100/17	10 0 910 1 70 1000000 680	0 1000 700 5 8	40 1 1200 1 1	1250 5 1300 10) 1400 1 1500								
* 0.01 15	50 0.001												LA 04_DISPLAY_CCT_VELO.DAT
120/11	1 100 5 1000 3	0 2400 60 500	0 100 10000	150 20000 250	50000 550								
* 100000	1000												METALLURGY.DAT
140/19	50 1000000 980	0 1000 1000 1	1100 0 1 130	0 0 05 1400 0	01 1500 0 01								
* 1600 0.	001			0.00 1100 0.									
150/11	1 100 5 1000 3	0 2400 60 500	0 100 10000	150 20000 250	50000 550								
* 100000	1000	6							600		600		
160/1	470	100000	4/1	1595 0029	530	227 7553	550	160 2617	600	1	630	1	
*	37.6386	670	45.6282	700	113.2562	720	222.2279	740	563.3254	741	563.3254		I Conv Data to Project File erzeugt alle
180/1 *	-42.8572	0.0002	-21.4286	0.0002	-6.8182	0.0002	-3.4483	0.9669	-2	0.9918			
190 / 1	470	1.661	471	1.661	530	1.7322	550	1.887	600	4.0247	630	5.3775	benotigten Dateien
*	5.5773	700	4.4199	720	5.0893	740	2.6611	741	2.6611				6
200/1	240	0	241	1	300	1	350	1	400	1	430	1	" Chamischa Zusammansatzung wird
21071	430	94 7895	460	155 3663	470	261 4315	471	263.0005	400	106.1926			I Chemische zusähnnensetzung wird
220/1	-42.8572	0.0002	-21.4286	0.0002	-6.8182	5.7498	-3.4483	3.0956	-2	4.0727			nun ebenfalls in METALLURGY DAT
230/1	240	2.0454	241	2.0454	300	2.0282	350	2.1375	400	2.4856	430	2.0454	
*	460	1.6149	470	1.3655	471	1.3655							geschriehen
240/15	00 0 505 1 727	1		~ ~									gesenneben
250/14	90 1000000 500	2400 1 5000	00 0.1 700 0. 1 10000 1 200	01									
END	1100110001	2400 1 3000	100001200										I Export Data to Project File erstellt die
WeldWar	e Daten:												
Composit	ion												I Dateien in das gewünschte Verzeichnis
%C	1.04												
%Mn	0.20								_				
%P	0.023												I (Arbeitsverzeichnis wird
%S	0.006												
%Cr	1.53												l vorgeschlagen)
%NI %Mo	0.008												
%V	0.009												
%Cu	0.2												
%AI													
%Ti													
%ND EndComp	osition												
Lindoomp													
	CV	GIV											
	JI	JVV											

- ï 02_CALIBRATE_CCT_PHASE_5.DAT 02_CALIBRATE_CCT_PHASE_4.DAT
- ï Phasenanteile werden mit einerGenauigkeit von maximal 0.3 %Abweichung kalibriert.

Abkühlrate	% Phase 5	% Phase 4 ZTU	% Phase 4
-21.4 K/s	0.00	0.00	0.00
-6.8 K/s	0.00	60.00	60.00
-3.4 K/s	40.00	40.00	66.67
-2.0 K/s	100.00	0.00	100.00

% Phase 4 =
$$\frac{\% Phase 4 ZTU}{(100 - \% Phase 5)} \times 100$$

SYSWELD

25. - 26. Oktober 2011, Weimar

Ermittlung und Aufbereitung von Werkstoffdaten für die numerische Schweißstruktursimulation

Teil 3:

WeldWare[®] Materialdatenaufbereitung mit der WWD-Schnittstelle am Beispiel des S275J0

Tobias Loose , Alexander Rausch,

Florian Hannemann, Arite Scharff

Dr.-Ing. Tobias Loose , Ingenieurbüro Tobias Loose, Wössingen (Lkr. Karlsruhe) B.Eng. Alexander Rausch, ESI Engineering System International GmbH, München cand.-ing. Florian Hannemann, ESI Engineering System International GmbH, München Dr.-Ing. Arite Scharff, SLV Mecklenburg-Vorpommern, Rostock

25. - 26. Oktober 2011, Weimar

Haftungsausschluß

Whilst this presentation has been carefully written and subject to intensive review, it is the reader's responsibility to take all necessary steps to ensure that the assumptions and results from any finite element analysis which is made as a result of reading this document are correct. Neither the companies not the authors can accept any liability for incorrect analysis.

WeldWare ®

25. - 26. Oktober 2011, Weimar

WeldWare dient...

- ï der Kalkulation der Wärmeführung vor Schweißbeginn an Stahl
- i der Berechnung von Gefüge und mechanischen Kennwerten in der WEZ von Schweißnähten
- i der Ermittlung notwendigerVorwärmtemperaturen an realen Bauteilen

WeldWare nutzt...

- ï ChargenübergreifendeRegressionsgleichungen
- ï Gemessene Schweiß-ZTU-Schaubilder aus eigenem Hause
- ï Zugehörige Materialdaten

Materaialdaten auswählen

Materialdaten auswählen

🔏 Auswahl des Grundwerk	stoffes				X	Datenbank Vorgabe der
EN-Bezeichnung	DIN-Bezeichnung	W-Nummer 📥	8275JO 1.0143	6		Chamischan
F32			C (<=0.18)	[%]: 0.1800		Chemischen
F36			Si ()	[%] . 0.4000		7usammensetzung kann
F40				[10] . 0.4000		Zusannienseizung kann
S185	St 33	1.0035	(UC.1=>) NM	[%]: 0.7500		modifiziert werden
8235	RSt 37-2	1.0038	P (<=0.04)	[%]: 0.0200		
S235J2		1.0117	S (<=0.04)	[%]: 0.0200	L	
S235J2	St 37-3 N	1.0116	Cr ()	[%]: 0.1000		
S235J2G4C		1.0119	Ni ()	1%1: 0.0500		
S235JO	St 37-3 U	1.0114	Mo ()	(%): 0.0200		Kontrolle, ob die Daten
S235JR	St 37-2	1.0037	WIU ()	[%]. 0.0200		, , , , , , , , , , , , , , , , , , ,
S235JRG1	USt 37-2	1.0036 📃	V ()	[%]: 0.0100		innerhalb gultiger
S275J2		1.0145	Cu ()	[%]: 0.1700		
S275J2G3	St 44-3 N	1.0144	AI ()	0.0200		Regressionsgrenzen liegen
S275J2G3C	QSt 44-3 N	1.0141	Ti ()	[%]: 0.0100		8 8 8
S275J2G4C		1.0142		1941 0.0200		
▶ S275JO	St 44-3 U	1.0143				
S275JR	St 44-2	1.5044	N (<=0.009)	[%]: 0.0045		
S355J2	A St 52	1.0577				Chargenverwaltung
S355J2G3	St 52-3 N	1.0570				8 8
S355JO	St 52-3 U	1.0553	19 01-01-01-01-01-01-01-01-01-01-01-01-01-0			
S355JR		1.0045	Charge ver	waiten und auswanien		Datapoyport Syswold
S355K2		1.0596 🔽		1		Datenexport Sysweiu
		>	Sysweld		Ľ	
Kontrolle	Protokoli	Drucken	Vübernehmen	Verwerfen		mit Weld Ware fortfahren

Chargenverwaltung

- 🗆 × 📌 Chargen Tabelle - Chargen Si P Mo Ni V Cu AI Nb. Chargennummer C Mn S Cr Ti N . 0.1800 0.4000 0.7500 0.0200 0.0200 0.1000 0.0200 0.0500 0.0100 0.1700 0.0100 0.0200 0.0200 0.0045 1. Charge 0.02 ► Krupp 0.100.3 0.6 0.02 0.1 0.025 0.06 0.01 0.15 0.1 0.02 0.02 0.03 Eingabe weiterer Chargen unter definierter Chargennummer / Chargenname. Beliebige Chargen können gespeichert und später auch wieder abgerufen werden. ÞÍ e M 🗸 Weiter

Gefügezusammensetzung berechnen

	Analys	se			1	- Wähle						
® IngBüro		С	(<=0.18)	[%]:	0.1800	C Abkühlzeit C Abkühlzeitbereich						
g Geometrie	WEZ/Schweißgut Bruchfestigkeit Sprache Servin	Si	()	[%] :	0.4000							
	Schweiß-210-Schaublider Gefügezusammensetzung	Mn P	(<=1.50) (<=0.04)	[%] : [%] :	0.7500	kleinste Abkühlzeit (>=1) [s]: 1						
	Mechanische Kennwerte				0.0200	arößte Abkühlzeit (<=300) [s]: 100						
Maximalhärte		S	(<=0.04)	[%]	0.0200	Schrittweite (>=1) [s]. 10						
	Streuung - neue Chargen	Cr	()	[%]:	0.1000							
	Streuung - gespeicherte Chargen Streuung - Mittelwert / Standardabweichung	Ni	()	[%] :	0.0500	Berechnung						
	Kaltrißneigung	Мо	0	[%] :	0.0200	Berechnung						
		٧	()	[%]:	0.0100	Abkühlzeitbereich						
		Cu	()	[%] :	0.1700	Zeit MARTENSIT ZWSTUFE PERLIT FERRIT						
Vorausberechnung des Gefüges in der WEZ aufgrund der		AI	()	[%] :	0.0200							
		Ti	0	[%] :	0.0100	11 10 66 14 10						
		Nb	0	[%] :	0.0200	21 1 48 29 22						
		N2	(<=0.009)	[%] :	0.0045	31 0 32 37 31						
			••••••••		1	41 0 21 41 38						
Stahlzusammensetzung			ю									
		1.014	3			61 0 10 42 48						
			221									

K30 Wert bestimmen

Mecklenburg-Vorpommern A Gefüge Legende ta [s] 7.1 💌 Ferrit [%] Martensit [%] Bainit [%] 59 ✔ Perlit [%] K30 Wert Θ, CR 7.1 S275JO 0.0200 0.0200 0.1800 Si: 0.4000 Mn: 0.7500 P: 0.0200 V: 0.0100 Cu: 0.1700 Al: S: 0.0200 Cr: 0.1000 Ni Ti: 0.0100 Nb: 0.9200 N2 C: Mo 0.0500 [%] 200 N2: 0.0045 100 Bainit - Martensit -Perlit ent 95 90 85 80 75 70 65 Gefügeanteile [%] 60 55 50 45 40 35 30 25 20 15 10 5 90 10 20 30 40 50 60 70 80 100 Abkühlungszeit von 850 °C bis 500 °C [s] 🗸 Weiter

K30-Wert als erforderliches Kühlzeit-Minimum zur Vermeidung von Rissen infolge Martensit und Aufhärtung

SYSWELD

Anzeige des SZTU-Diagramms

25. - 26. Oktober 2011, Weimar

Teil 3 Seite 11

Abschätzung der zu erwartenden mechanischen Kennwerte in der WEZ ...

Mecklenburg-Vorpommern

	Ana 🚮 Ana	alyse des	Grundwerkstof	fes zur Be	rechnung de	r mechanisch	en Kennwert	e			_ 0
	An:	Analyse									
Geometrie	WEZ/Schweißgut Bruchfestigkeit Sprache S	ervic C	(<=0.18)	[%] : [%] :	0.1800	Wäl	nle	~		224722	Ť I
	Schweiß-ZTU-Schaubilder	Si	0			C Abkuhizeit • Abkuhizeitbereich					
	Gerugezusammensetzung Mechanische Kennwerte	Mn	(<=1.50)	[%] :	0.7500	1		2. 22			Ĩ
	Maximalhärte	P	(<=0.04)	[%] ·	0.0200	KIE	inste Apkunizeit	(>=1)	[S]: 1	0	
	Streuung - neue Chargen	s	(<=0.04)	[%]	0.0200	gr	oßte Abkühlzeit	(<=300)	[s]: 10		
	Streuung - gespeicherte Chargen Streuung - Mittelwert / Standardabweichung	Cr	()	[%] -	0.1000	Sc	hrittweite	(>=1)	[s]:)'		
	Kaltrißneigung -	Ni	Ú.	[%] :	0.0500			m			4
		Mo	0	[96] ·	0.0200			Berechnur	g		
		V	0	[96] -	0.0100	Ergebnis	se - Abkühlzeit	bereich			
		Çu.	0	[20] -	0.0100	Zeit	Harte	DEHNGRENZE	ZUGFESTIG	BRUCHDEH	BRUC
		0		[/0].	0.1700	Þ	1 41	0 891	1087	0	
		A	0	[70].	0.0200		2 36	9 789	997	2,4	
		11	()	[%]:	0.0100		3 34-	4 725	933	5	
		Nb	()	[%] :	0.0200	100	4 32	680	887	6,9	1
		N2	(<=0.009)	[%] :	0.0045		5 31:	2 647	852	8,4	
					1. Contraction (1. Contraction)		6 30:	2 620	824	9,5	
			ю				7 293	3 598	801	10,5	17
		1.0143				<					>
		Pruc	ken [Erotokoll		🔯 <u>G</u> rafik	🔯 <u>G</u> rafik 🚺 🖌 Üb		pernehmen X		

... dient der Vermeidung technologischer Kerben im Vergleich zum ungeschweißten Grundwerkstoff

Mecklenburg-Vorpommern

Forum 2011

25. - 26. Oktober 2011, Weimar

Schweißdaten, die den K30-Wert (7,1 s) sichern.

SYSWELD

Schweißdaten abschätzen

Auswahllisten					
Auswahilisten Draht Prozeß Draht 111 (E) 1.0 121 (UP) 1.2 131 (MIG) 1.4 136 (MAG, FD) 1.8		Naht	Nahtart 1100 Stumpfstoß Nahtform 1104 V-Naht	C Fül	rzellage Ilage sklage
Wärmephysikalische Kenn Wärmeleitfähigkeit Volumenwärmekapazität	werte [W/(cm K)] [J/(cm³ K)]	0.4	Kennwerte ändern	✓ Überne ★ Verw	ehmen erfen
Parameter Stromstärke Spannung Schweißgeschwindigkeit Vorwärmtemperatur	60 200 [A] 18 25 [V] 16 40 [cm/min] 20 450 [°C]	180 22 1 20 20	Blechdicke 1 Blechdicke 2 Effektiver thermischer Wirkungsgrad Relativer thermischer Wirkungsgrad	[mm] [mm] 0.58 0.72 0.8 0.9	12 12 0.67 0.85
Ergebnisse Abkühlzeit [s] Uwer-De Streckenenergie U'1'60/v	genkolbe (2-dim.) s [kJ/cm]	8.90 11.90	Berechnen	Dr	ucken otokoli

25. - 26. Oktober 2011, Weimar

Materialdatenaufbereitung mit der WWD-Schnittstelle am Beispiel des S275J0

25. - 26. Oktober 2011, Weimar

Datensatz in WeldWare auswählen und exportieren

🚮 Auswahl des Grundwerkstoffes 🛛 nach Eingal	oe von Werkstoffnumme	r oder Stahlbezeichnung					_ 🗆 ×
Suche nach der Werkstoffnummer	Liste der gefundenen Gr	undwerkstoffe		S275J	0 1.0143 1.	Charge-	
Werkstoffnummer	EN-Bezeichnung	DIN-Bezeichnung	Werkstoff-	с	(<=0.18)	[%]:	0.1800
	S275J2		1.0145	Si	0	[%]:	0.4000
1.0143	S275J2G3	St 44-3 N	1.0144	Mn	(<=1.50)	[%]:	0.7500
	S275J2G3C	QSt 44-3 N	1.0141	Р	(<=0.04)	[%]:	0.0200
🍞 Suche <u>a</u> uslösen	S275J2G4C		1.0142	9	(<=0.04)	[96] -	0.0200
3	▶ S275JO	St 44-3 U	1.0143		(0.04)	[/v] . = [0/1.	0.1000
	S275JR	ST 44-2	1.0044	Cr	0	4 ^{[%]:}	0.1000
Suche nach der Stahlbezeichnung	S275M		1.8818	NI		[%]:	0.0500
	S275ML		1.8819	Mo	0	[%]:	0.0200
Stahlbezeichnung :	S275N	StE 285	1.0490	V	55	[%]:	0.0100
1 \$275J0	S275NL	TStE 285	1.0491	Cu	0	[%]:	0.1700
			-	AI	0	[%]:	0.0200
2 r⊋i Suche nach EN-Bezeichnung	•			Ті	0	[%]:	0.0100
				Nb	0	[%]:	0.0200
😥 Suche nach <u>D</u> IN-Bezeichnung	4 🖄 Cł	narge verwalten und ausw	rählen	N	(<=0.009)	[%]:	0.0045
		6	🕒 Syswe	eld			
5 Kontrolle	<u>Protokoll</u>	Drucken	🗸 Überner	nmen	🗙 Ve	rwerfen	

Meldet die "Kontrolle" Werte außerhalb des Gültigkeitsbereiches muß die chemische Analyse entsprechend angepaßt werden.

SYSWELD

Daten exportieren

Confirm Wollen Sie den ExportPfad C:\Programme\Gemeinsame Dateien\SLVDATEN\Exportdatei Yes No	en\ ändern?	Die Dat Datei ge Dateina Werkste Charger	en werden ir espeichert, d ime sich aus offnamen un nnummer zus	n einer *.wwo essen dem d der sammensetz	d
C:\Programme\Cemeinsame Dateien\SLVDATEN\Exportdateien	10. 1 Charge J	anad	Größe	Typ WWD-Datei	Geä
Crogramme Crogramme Crogramme SLVDATEN Exportdateien		Das Ziel werden nicht zu	lverzeichnis k . Der Pfadna ı lang gewähl	kann frei gew me darf jedo It werden.	/ählt och
	Information				×
Ŭbernehme ★ Verwerfen	Die A X:\01 und i:	Ausgabe für SysWo I-projekte\projekt st erfolgreich abgo	eld erfolgte nach e_2010\10012-Sysweldfo eschlossen.	rum-2011\5275JO_1Char	rge.wwd
	4.				

Gefügeumwandlung -- PTCM

Vordefinierte Phasenbelegung im PTCM

- ï Phase 1: Grundwerkstoff
- ï Phase 2: Zusatzmaterial
- ï Phase 3: Martensit
- ï Phase 4: Bainit = angelassener Martensit
- ï Phase 5: Ferrit / Perlit
- ï Phase 6: Austenit

Die Umwandlungsdefinition aller Phasen nach Austenit und die Umwandlung von Martensit zu angelassenem Martensit erfolgt vom PTCM automatisch.

SYSWELD

Tstart: 850 Tend: 500

Importierte	Daten
--------------------	-------

Start- Endzeit für die Bestimmung der Abkühlzeit

Cooling Start T	856			
Welding:	Start-Temp	End-Temp		
Phase 5	726	567		
Phase 4	567	432		

Starttemperatur der Abkühlung = Ac3

Start- und End-Temperaturen der Umwandlungsbereiche Ferrit und Bainit

Martensite	Start Tem	perature:
Koistinen M	/larburger	Factor:

Martensit Starttemperatur

Welding:	Start-Temp	End-Temp
Phase 5	0	0
Phase 4	0	0

Zu einigen WeldWare Datensätzen existieren nicht alle Start- oder End-Temperaturen. Diese müssen dann vom Anwender selbst ergänzt werden

432

Chemical Composition:					
C: 0.18					
Si:	0,4				
Mn:	0,75				
P:	0,02				
S:	0,02				
Cr:	0,1				
Ni:	0,05				
Mo:	0,02				
V:	0,01				
Cu:	0,17				
AI:	0,02				
Ti:	0,01				
Nb:	0,02				
N:	0,0045				

Importierte Daten

Die chemische Zusammensetzung wird mit übernommen, beim Export in der METALLURGY.DAT abgespeichert und vom Material Data Manager beim Import gelesen.

Damit bleibt der Materialdatensatz nachvollziehbar, insbesondere wenn es zu einem Werkstoff mehrere Chargen gibt.

Importierte Daten

Cycle Number	Start-time	End-time	Rate	% Phase 1	% Phase 2	% Phase 3	% Phase 4	% Phase 5	% Phase 6
1	0,00	1,00	-350,0000	0	0	99,8	0,2	0,0	0,0
2	0,00	2,00	-175,0000	0	0	94,8	4,8	0,4	0,0
3	0,00	3,00	-116,6667	0	0	82,7	16,0	1,3	0,0
4	0,00	4,00	-87,5000	0	0	67,5	29,5	3,0	0,0
5	0,00	5,00	-70,0000	0	0	53,0	41,7	5,3	0,0
6	0,00	7,50	-46,6667	0	0	27,1	60,5	12,4	0,0
7	0,00	10,00	-35,0000	0	0	13,6	65,8	20,6	0,0
8	0,00	12,00	-29,1667	0	0	8,0	65,0	27,0	0,0
9	0,00	15,00	-23,3333	0	0	3,7	60,2	36,1	0,0
10	0,00	20,00	-17,5000	0	0	1,2	49,8	49,0	0,0
11	0,00	30,00	-11,6667	0	0	0,2	32,7	67,1	0,0
12	0,00	40,00	-8,7500	0	0	0,0	21,9	78,1	0,0
13	0,00	50,00	-7,0000	0	0	0,0	15,1	84,8	0,0
14	0,00	75,00	-4,6667	0	0	0,0	6,7	93,3	0,0
15	0,00	100,00	-3,5000	0	0	0,0	3,4	96,6	0,0
16	0,00	125,00	-2,8000	0	0	0,0	1,8	98,2	0,0
17	0,00	150,00	-2,3333	0	0	0,0	1,1	98,9	0,0
18	0,00	200,00	-1,7500	0	0	0,0	0,4	99,6	0,0
19	0,00	300,00	-1,1667	0	0	0,0	0,1	99,9	0,0
20	0,00	1000,00	-0,3500	0	0	0,0	0,0	100,0	0,0

Für 20 ausgewählte Abkühlraten werden die Gefügeanteile für Martensit (3) Bainit (4) und Ferrit/Perlit (5) eigelesen.

Kalibrieren der Leblond -Parameter für Phase 4 und 5

Kalibrieren der Leblond -Parameter für Phase 4 und 5

Mecklenburg-Vorpommern

-0,175

Export 2 M Cooling Rates CCT Fitting - Phase 5 CCT Fitting - Phase 4 Martensite Transformation - P 3

CCT-Fitting – Phase 4 im Tabellenreiter wählen und Kalibrierung starten

Automatic Calibration of Phase 4

Cycle Number	Rate	F	Fp
1	-350,000000	0,0002	0,0002
2	-175,000000	0,0044	0,0044
3	-116,666702	0,0137	0,0137
4	-87,500000	0,0229	0,0229
5	-70,000000	0,0239	0,0239
6	-46,666698	0,0427	0,0427
7	-35,000000	0,0507	0,0507
8	-29,166700	0,0576	0,0576
9	-23,333300	0,0656	0,0656
10	-17,500000	0,0740	0,0740
11	-11,666700	0,0814	0,0814
12	-8,750000	0,0832	0,0832
13	-7,000000	0,0829	0,0829
14	-4,666700	0,0789	0,0789
15	-3,500000	0,0737	0,0737
16	-2,800000	0,0689	0,0689
17	-2,333300	0,0634	0,0634
18	-1,750000	0,0556	0,0556
19	-1,166700	0,0413	0,0413
20	-0,350000	0,0130	0,0130

Auskalibrierte Werte Phase 5

Auskalibrierte Werte Phase 4

© 02_CALIBRATE_CCT_PHASE_4.LOG 02_CALIBRATE_CCT_PHASE_5.DAT 02_CALIBRATE_CCT_PHASE_5.LOG 03_CALIBRATE_MS.DAT Material_Data_Manager_V3_400_vicm

Solver Dateien für die Umwandlungskinetik

Während der automatischen Kalibrierung werden Solverfiles (*.DAT) und LOG-Files in das gewählte Arbeitsverzeichnis geschrieben.

Der Solver Code in den DAT-Dateien enthält die Beschreibung der Umwandlungskinetik für die einzelnen Phasen. Die DAT-Datei kann direkt vom Solver im Grafik Modus (Sysweld GUI) geladen werden. Danach wird der Verlauf der Umwandlung angezeigt

Martensit Transformation

Martensite Start Temperature: 432 Martensite Transformation - P 3 / E Koistinen Marburger Factor: 0.0140 Koinstinen Marburger Faktor wählen 1 **Evolution of Martensite Proportion** 120% 100% 2 Phase Proportion P(T) 80% Der Umwandlungsverlauf wird angezeigt. 60% Verlauf prüfen, gegebenenfalls den 40% Koinstinen Marburger 20% Faktor anpassen 0% 20 70 120 170 220 270 320 370 420 Temperature in °C **SYSWELD**

Export in Metallurgy Datei

PTCM Datei als Excel mit Macro abspeichern: S275_WWD_PTCM_V1.81.xlsm

SZTU-Diagramm in Sysweld darstellen

	Mecklehburg	-volponinem			
	Help	CCT and IT Diagrams Plotting	×	<	
	🕮 🤌 k ?	V General Data			
0 0 7	Helding Advisor Tools	<pre>Choice of the plotting :</pre>			
0 0 7 0	Heat Input Fitting Metal. Fitting	✓ IT Diagram (imposed temperatures) Title : Ĭ			Plotting description
7 3 0	Local Model Wizard Pan-Assembly Manager	Filename : »rface/05-Demo-S275J0/S275_HHD_METALLURGY.DAT			Plotting abscissa A Time A Seconds Velocity A Minutes
7 0 0 7	Metallurgical File	Material number : 1 2 3 4 5 Austenite location : 1 2 3 4 5 6			↓ Temperature ↓ Hours Precision .0001
0	Others	CCT Diagram (imposed cooling rate) Minimum Velocity (-700,000000) Number of subdivisions 20(Diagran Thernal cycles Phase curve Phase number
		Maximum Velocity -0.175000			,
		Initial temperature 777.0 Final temperature 20.00 Temperature Step 5			Plotting description
		Rdd 20.000000 STEP -5			OK Edit

SZTU-Diagramm in Sysweld darstellen

WeldWare Daten laden

Stress-Strain-Calibration-Manager

Image: S27530_1Charge.wwd Beim Image: S27530_1Charge.wwd Image: S27530_1Charge.wwd Image: S27530_1Charge.wwd	Strain Hardening
Warning! Implausible Data: Implau: Implausible Data: Imp	Import der Daten erfolgt eine bilitätskontrolle. d gefordert, daß bei Abkühlzeit
1,08% Bainite 0% Martensite Please check the imported values and correct them if necessary. Werde eine W aufgefe	s der Martensitanteil > 90 % ist 000 s der Ferritanteil > 90 % ist inimale Streckgrenze bei einer Ilzeit von 1000 s liegt.
	en die Bedingungen verletzt erfolgt Varnung und der Anwender wird fordert die Daten zu kontrollieren gf. zu berichtigen.

SYSWELD

Importierte Daten

Mecklenburg-Vorpommern

Name of Material S		S275JO							
Charge				1,0					
					Yield	Strain			%Ferrite
			Nr	ta [s]	Strength	Hardening	%Martensite	%Bainite	
Chemical com	position:				[N/mm²]	[N/mm²]			Pearlite
%C:	0,18		1	1	891	196	99,75	0,19	0,07
%Si:	0,4		2	2	789	208	94,83	4,75	0,42
%Mn:	0,75		3	3	725	208	82,68	15,96	1,36
%P:	0,02		4	4	680	207	67,51	29,46	3,03
%S:	0,02		5	5	647	205	53,04	41,71	5,25
%Cr:	0,1		6	7,5	589	201	27,07	60,5	12,43
%Ni:	0,05		7	10	551	199	13,61	65,85	20,55
%Mo:	0,02		8	12	529	198	7,97	65,01	27,01
%V:	0,01		9	15	503	196	3,71	60,17	36,12
%Cu:	0,17		10	20	474	194	1,15	49,81	49,04
%AI:	0,02		11	30	438	192	0,15	32,74	67,11
%Ti:	0,01		12	40	418	190	0,03	21,91	78,06
%Nb:	0,02		13	50	405	190	0,01	15,12	84,88
%N:	0,0045		14	75	388	189	0	6,7	93,3
			15	100	380	190	0	3,37	96,63
			16	125	377	190	0	1,85	98,15
			17	150	377	191	0	1,08	98,91
			18	200	380	192	0	0,43	99,57
			19	300	391	195	0	0,1	99,9
			20	1000	473	211	0	0	100

Materialname, Chemische Zusammensetzung, Abkühlrate, Streckgrenze, Zugfestigkeit und Gefügeanteile werden zur Information angezeigt.

Importierte Daten

	Nr	ta [s]	Yield Strength [N/mm²]	Strain Hardening [N/mm²]	%Martensite	%Bainite	%Ferrite / Pearlite
	1	1	891	196	99,75	0,19	0,07
	3	.,0	200	201	24,07	3,75	.2,10
	1	10	551	199	13,61	65,65	20,55
	16	125	377	190	0	1,85	98,15
	20	1000	473	211	0	0	100

Aus den Abkühlraten übernommene Werte für

Zugfestigkeit und Verfestigung

Measured Values at room temperature	Yield Strength [N/mm²]	Strain Hardening [N/mm²]	
Initial Material			
Martensite	891	196	
Bainite	551	199	
Ferrite / Pearlite	473	211	
Austenite			
True Strain at:	0.13 -		

Werte für Ferrit / Perlit berichtigen und Werte für Initial Material

ergänzen. (hier dieselben wie für Ferrit / Perlit)

Measured Values at room temperature	Yield Strength [N/mm²]	Strain Hardening [N/mm²]
Initial Material	377	190
Martensite	891	196
Bainite	551	199
Ferrite / Pearlite	377	190
Austenite		
True Strain at:	0.13 -	

Basisfunktionen Start der Kalibrierung

Mecklenburg-Vorpommern

Yield Source-Data		Strain Hardening Source-Data					True Str	0.13	Ţ		
Temperature	Value		Temp [°C]								5
[°C]	[N/mm²]		/	Value	Value	Value				0.085	
20	360		Strain [%]	0	0,003	0,0035				0.1	
100	345,6		20	0,0	3,0	4,0		Yield Sou	rce-Data	0.13	
200	321		100	0,0	3,0	4,0		Temperature	Value	0.17	
300	301		200	0,0	4,0	7,0		[°C]	[N/mm ²]	0.24	
400	276		300	0,0	6,1	10,7		20	360	0.3	
500	227,5		400	0,0	12,8	16,7		100	345,6	0.4	
600	179,8		500	0,0	13,1	16,4		200	321	0.5	
700	87,9		600	0,0	1,8	2,6		300	301	0.0	-
800	51,3		700	0,0	1,2	1,7	Γ		T		
900	37		800	0,0	0,5	0,8		Der wert "	Irue Strail	n at" gib	C
1000	24,4		900	0,0	0,3	0,5		die wahre	plastische	Dehnun	g
1100	16,2		1000	0,0	0,3	0,4					0
1200	5		1100	0,0	0,0	0,0		an, bei der	ale Zugre	stigkeit	
1300	5		1300	0,0	0,0	0,0		erreicht wi	rd.		
1505	5		1505	0,0	0,2	0,2					

Basisfunktion im Beispiel sind die die Werte der Spannung-Dehnungsbeziehung aus Warmzugversuchen, die von Wichers am S355J2 durchgeführt wurden.

Import WeldWare Data	Delete WeldWare Data	Calibrate Yield and Strain Hardening
----------------------	----------------------	--------------------------------------

Ergebnis der Kalibrierung, Speichern!

25. - 26. Oktober 2011, Weimar

Teil 3 Seite 35

Sysweld Materialdatensatz mit dem MDM erstellen

	choose import me.
Import Material Database	Suchen in: D5-Demo-S275J0

Vorhandenen Materialdatensatz eines Ähnlichen Werkstoffs Importieren

Metallurgy Datei des S275 laden = Export File aus SSCM

Sysweld Materialdatensatz mit dem MDM erstellen

Mecklenburg-Vorpommern

	Which Phases should be Imported?	×
Import Yield from StrainHardening Tool	Choose Phases for Import:	
	PHASE 1 PHASE 2 PHASE 4 PHASE	
Import Strain Hardening from StrainHardening Tool	PHASE 5 🗹 PHASE 6 🗆	
	OK Cancel	

Yield und Strain Hardening Daten aus dem SSCM importieren, dabei die Phasen 1, 3, 4 und 5 anwählen. Phase 6 (Austenit) und Phase 2 (Zusatzwerkstoff) bleiben ohne Modifikation

! Materialdaten kontrollieren!

SYSWELD

Export in *.mat Datei

	MANAGEI	R - EXPORT
W S275J0_W VD_TLO mechanical mm		Please Select Exportsheet:
FIN LISTE		
Tranfer Data From Sheets to a Ma	terial Data File	VIELD STRESS Multiply Yield Stress by Factor Keep Values Above Temperature 700
COMMENTAIF ES :		STRAIN HARDENING
MATERIAL:	base	Multiply Strain Hardening by Factor
Fitting rield and clope or parmit, martenan as described	com[i]	
	Implausi	ble Data in Dataset!
AUTOR: DrIng. Tobias Loose	Warning keep th	g: There are values of Young's Modulus below 1000 N/mm² (145 ksi). Do you want to ese values?
REFE [1] Lc Dateiname: S275J0_WWD_TLO.mat	Expo	rt without Changes Export with minimum value Cancel Export
Stahi Material Database (*.mat)	an aue Stahl	Es erfolgt eine Plausibilitätskontrolle, Hier mit Export without Changes weitergehen

Verwendung des neuen Materialdatensatzes beispielsweise in Visual Weld

Visual-Weld 7.5 - KTS.vdb _ 8 × en File Edit View Welding Tools Window Help #]] # # 0 ₽] 4 4 3 68 🚽 🚽 🗢 😔 🦉 🗟 🏛 🔍 🔍 🥭 Standard Views 👆 By 🔽 ALL** \$\$ \$ \$ B B + • 2 😼 💑 🍓 總 🔠 Part 🔽 🛼 🔤 ALL ** 🔍 💮 🐷 💦 🛵 🐅 # F -Visibility Page Selection Utility A X D A X 100 Open : X:\01-projekte\projekte 2010\10012-5ysweldfo - **-** X 铝 **A**. 團 2 x E Welding Advisor Look in: 🙆 06_Datatest Mesh **3** Component Properties Name 🔺 ß Material 😹 KTS.mat X:\01-projekte\projekte_2010\100; 3 *Database: F S275J0_WWD_TLO.mat Weld 3 *Class: All Y 17 Components O Joints with Filler Local Model Assign Advisor *Component IN \$27530_WWD_TLO × *Material: Viewer E Add Manager Thickness 🔥 Material PLATTE_COMPO \$275J0_WWD_T... NA STEIFE COMPO S275J0 WWD T ... NA 4 3 P1W1 Enlarge **SYSWELD** Teil 3 Seite 40 25. - 26. Oktober 2011, Weimar